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Abstract

An atomic snapshot memory is a shared data structure allowing concurrent
processes to store information in a collection of shared registers, all of which
may be read in a single atomic scan operation. This paper presents three
wait-free implementations of atomic snapshot memory. Two constructions
implement wait-free single-writer atomic snapshot memory from wait-free
atomic single-writer, n-reader registers. A third construction implements a
wait-free n-writer atomic snapshot memory from n-writer, n-reader registers.
The first implementation uses unbounded (integer) fields in these registers,
while the other implementations use only bounded registers. All operations
require O(n 2) reads and writes to the component shared gisters in the
worst case.

Keywords: Distributed systems, shared memory, atomic snapshots, wait-
free algorithms, read/write atomic registers, serializability. r
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1 Introduction

Obtaining an instantaneous global picture of a system, from partial obser-
vations made over a period of time as the system state evolves, is a fun-
damental problem in distributed and concurrent computing. Indeed, much
of the difficulty in proving correctness of concurrent programs is due to
the need to argue based on "inconsistent" views of shared memory, ob-
tained concurrently with other process's modifications. Verification of con-
current algorithms is thus complicated by the need for a "non-interference"
step [Owi75, OG761. By simplifying (or eliminating) the non-interference
step, atomic snapshot memories can greatly simplify the design and verifi-
cation of many concurrent algorithms. Examples include exclusion problems
[K78, L86c, DGS88], construction of atomic multi-writer multi-reader reg-
isters [VA86, Blo87, PB87, S88, LTV89], concurrent time-stamp systems
[DS89], randomized consensus [A88, AH89, ADS89, A90] and wait-free im-
plementation of data structures [AH90].

This paper introduces a general formulation of atomic snapshot mem-
ory, shared memory partitioned into words written (updated) by individual
processes, or instantaneously read (scanned) in its entirety. It presents three
wait-free implementations of atomic snapshot memories, constructed from
wait-free atomic registers. (In [A89a, A89b, An90], Anderson independently
introduces the same notion and presents bounded implementations. See
Section 6 for a discussion.) The first implementation uses unbounded (in-
teger) fields in these registers, and is particularly easy to understand. The
second implementation uses bounded registers. Its correctness proof follows
the ideas of the unbounded implementation. Both constructions implement
a single-writer snapshot memory, in which each word may be updated by
only one process, from single-writer, n-reader registers. The third algorithm
implements a multi-writer snapshot memory [A89b] from wait-free atomic
n-writer, n-reader registers, again echoing key ideas from the earlier con-
structions. Each update or scan operation requires 0(n 2 ) reads and writes
to the relevant embedded atomic registers, in the worst case.

A related data structure, multiple assignment, allows processes to atow
ically update nontrivial and intersecting subsets of the memory words, and
to read one location at a time. However, multiple assignment has no wait-
free implementation from read/write registers [H88]. The fact that wait-fret
atomic snapshot memories can be implemented from wait-free atomic regis-
ters stands in contrast to the impossibility results in [1188].

Section 2 of this paper defines single-writer and multi-writer atomic
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snapshot memories. Section 3 contains an implementation of single-writer
snapshot memories from unbounded single-writer multi-reader registers, Sec-
tion 4 presents an implementation of single-writer snapshot memories from
bounded single-writer registers, and Section 5 presents an implementation
of multi-writer snapshot memories from bounded multi-writer, multi-reader
regi3ters. Section 6 concludes with a discussion of the results, related work
and directions for future research.

2 Atomic Snapshot Memories

Consider a shared memory divided into words, where each word holds a
data value. In the single-writer case, there is one word for each process,
which only it writes (in its entirety) and the others read. In the multi-writer
case, any of the words may be read or written by any of the processes. An
n-process atomic snapshot memory supports two types of operations, scani
and updatei, that are available to each process Pi. Executions of scans and
updates can each be considered to have occurred as primitive atomic events
between the beginning and end of the corresponding operation execution
interval, so that the "serialization sequence" of such atomic events satisfies
the natural semantics. That is, each scan operation returns a vector 0
of values such that each vk is the argument of the last update to word k
that is serialized before that scan. (This variant of serializability is called
"linearizability" [HW87].) This intuition is made precise in the following
subsection.

Two further restrictions axe imposed on implementations of atomic snap-
shot memories. First, following e.g. [L86b, H88], any snapshot implemen-
tation is required to be constructed with single-writer, multi-reader atomic
registers as the only shared objects. The single-writer algorithms in Sec-
tions 3 and 4 satisfy this restriction directly, and the multi-writer algorithm
in Section 5 satisfies this restriction when the embedded multi-writer regis-
ters are in turn implemented with one of the previously known constructions
from single-writer registers, e.g., [PB87, LTV89].

The second restriction imposed on snapshot memory implementations is
that they satisfy the property of wait-freedom [L86a, P831. That is, every
snapshot operation by process Pi will terminate in a bounded number of
atomic steps of Pi, regardless of the behavior of other processes, assuming
only that local steps of Pi and operations on embedded shared objects ter-
minate in bounded time. (The reader is referred to [L86a, H88, AG88] for
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discussions and proposed definitions of wait-freedom.)

2.1 Formal Specification of Single-Writer Snapshot Memo-
ries

Following [LT87, 1188], a single-writer atomic snapshot memory for n pro-
cesses and a particular value set Value is an automaton with two types
of input Request actions: UpdateRequesti(v) and ScanRequesti, and two
types of output Return actions: UpdateReturni and ScanReturni(v, ... Vn),
for any i E {1..n}, and for all v, v,...,v,, E Value. These actions are called
the interface snapshot actions.

The formal specification of single-writer snapshot memory is based on a
particular automaton, SWS. In addition to the interface snapshot actions,
SWS has two types of internal actions, Updatei(v), and Scani(vj, ..., vn), for
any i E {1..n} and for all v, v,...,, E Value. The states of SWS contain
an n-entry array Mem of type Value and n interface variables Hi. The
interface variables may hold as value any of the interface snapshot actions,
or a special value I.

Process Pi interacts with SWS by issuing a request (an UpdateRequesti(v)
or ScanRequest action). The result is to store the input action in the vari-
able Hi, enabling the appropriate internal action (Updatei(v) or Scanj(vj, ..., vn)).
The internal action in turn assigns an appropriate output action to Hi,
and in the case of Updatei(v), assigns v to Memi as well. The change to
the interface value Hi enables the appropriate output (UpdateReturni or
ScanReturni(v1 , ... , vn) action). Initially, each Hi = I and Memi = vinit E
Value.

The steps of SWS appear in Figure 1, with the convention that actions
without preconditions are always enabled (e.g., input actions), and that state
components not explicitly described in the effect of an action are presumed
to retain their old value. Note that, while requests and returns by different
processes may be interleaved, these actions only alter the interface variables
for the associated processes. The "real" work is done by the atomic internal
actions, formalizing the intuition that operations of atomic memories can
be assumed to have occurred at some instant between the invocation and
response. Accordingly, an operation of SWS in a is said to be serialized at
the point of its associated Update or Scan operation.

The well-formed behaviors of SWS are those in which the environment
never issues two Request, inputs without waiting for an intervening, match-
ing Returni output. An automaton A implements a single-writer atomic
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UpdateRequest, (v)

Effect: Hi UpdateRequest,(v)

Update,(v)

Precondition: Hi UpdateRequesti(v)

Effect: Mem[i] := v
Hi : UpdateRetuim,

UpdateReturn -

Precondition: Hi UpdateReturxn-

Effect: H:

ScanRequest,

Effect: H, := ScanRequest,

Precondition: Hi = ScanRequest,

Effect: Hi : ScanReturni(vi, ... , vn)

Precondition: Hi ScanReturni(VI , ... ,in

Effect: H, := I

Figure 1: The SWS automaton.
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snapshot memory provided A has the interface snapshot actions as its input
and output actions, and provided every well-formed behavior of A is also a
behavior of SWS. 1

2.2 A Specification of Multi-Writer Snapshot Memories

Multi-writer snapshot memories are straightforward generalizations of single-
writer snapshot memories, and can be specified analagously. Specifically, a
multi-writer snapshot memory for n processes, a particular value set Value
and m memory elements is an automaton with input actions: Updateftequesti(k, v),
ScanRequesti, and output actions: UpdateReturr;, ScanReturni(Vl, ..., Vm),
for all i E {1..n}, k E { 1,.. ., m), and v, vi, ... , v.. E Value.

Straightforward modifications of the automaton SWS of Figure 1 are
used to constrain implementations of multi-writer snapshot memories, just
as SWS constrained single-writer snapshot memories. (The details are left
to the reader.)

3 The Unbounded Single-Writer Algorithm

The algorithm is based on two observations:
Observation 1: Suppose every update leaves a unique, indelible mark
whenever it writes to the memory. If two sequential reads of the entire
memory return identical values, where one read started after the first com-
pleted, then the values returned constitute a snapshot [PB87].

This observation alone supports a simple unbounded algorithm, although
one which is not wait-free. The kth update by processor Pi simply writes
the update value v and a sequence number k to a shared register in a single
atomic write. Scanners repeatedly collect the values of all n registers, until
two such collect operations return identical values. By Observation 1, such
a successful double collect is a snapshot.

Because updates may occur between every two successive collect opera-
tions, this algorithm is not wait-free. However, the scanner may attribute
every unsuccessful double collect to a particular updating process, whose
sequence number was observed to change. Thus:

'Alternative approaches to specifying concurrent objects are via their serial specifica-
tion HW87 or as a set of axioms (cf. [L86a, M86]). Axiomatic specifications for snapshot
memories appear in [A89a, A89b, ADS89].



Observation 2: If a scan sees another process move (complete an update)
twice, that process executed a complete update operation within the interval
of the scan.

Suppose every update performs a scan and writes the snapshot value
atomically with the value and sequence number. Now a scanner who sees
two updates by the same process can borrow the snapshot value written by
the second update.

A straightforward implementation uses the following shared data struc-
tures. (See Figure 2.) Each process Pi has a single-writer, n-reader atomic
register, ri, that Pi writes and all processes read. The register has three
fields, value(ri) (of type Value), seq(ri) (of type integer) and view(ri) (a
vector of n Values). The value and view fields are initialized to viit and
the seq fields are initialized to 0.

The value of seqi is stored (locally) across invocations of updatei. In
addition, each scan operation has a local vector moved, in which it records,
for each other process, whether it has performed an update operation that
overlapped the scan operation. The collect operation by any process i reads
each register r3, J E {1..n}, in an arbitrary order, returning a vector of
records read, indexed by process id.

3.1 Correctness Proof

The proof strategy is to construct an explicit serialization. That is, given an
infinite or finite run of the system, calls and returns from the updatei proce-
dures are identified with the UpdateRequest i and UpdateReturni, actions,
and calls and returns from scan procedures (unless called from within up-
dates), are identified with the ScanRequest i and ScanReturni actions. The
scan and update operations themselves consist of sequences of more primi-
tive operations that are either reads and writes of atomic registers, or ma-
nipulations of local data. The former are atomic by assumption; the latter
are trivially atomic. Hence, an arbitrary run of an n-process system can be
considered to be a (possibly infinite) sequence of interface snapshot actions,
and atomic reads, writes or local data manipulations. Given this sequence,
Scani and Updatei actions are added so that the resulting sequence, pro-
jected on the actions of SWS, is a schedule of that automaton. Hence, the
algorithm is atomic.

Consider then any sequence a = Z17r2 ..., where each 7ri is either an ac-
tion of SWS, a read readi(ri = v) by Pi of atomic register ri returning v, a
write writei(ri = v) by Pi of v to ri, or a local computation event. Denote
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procedure scani
begin

0: for j = 1 to n do movedj := 0 od;
1: a collect; /* (value, seq, view) triples */
2: b collect; /* (value, seq, view) triples *1
3: if(Vj E {1..n}) (seq(ai) = seq(bj)) then
4: return (value(bi),...,value(b,)); /* Nobody moved. */
5: forj=ltondo
6: if seq(aj) 4 seq(bj) then /* Pi moved */
7: if movedj = 1 then /* P moved once before! *1
8: return (view(bj));
9: else moved, := moved1 + 1

od;
10: goto line 1;

end scanj;

procedure update, (value)
begin

1: § := scani; /* Embedded scan.
2: ri := (value, seqi + 1, )

end updatei;

Figure 2: The unbounded single-writer algorithm.
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by ak the k-length prefix of a. Although the internal states of the atomic
register implementations are not known, for any such finite prefix ak of a
it is natural to define the state of the shared memory after ak, or state(ajk),
to be the vector (al, ... ,,), where ai is the value of the last write by pro-

cr-s Pi in ak, or the initial value if Pi has not yet written. If state(ak) =
(aj,...,an), then snapshot(ak) denotes (value(ai),...,value(a,)). The se-
quence snapshot(ao),snapshot(al),snapshot(a2)... serves as the basis for
the serialization of a.

The update operations are serialized at the same point in the run as their
embedded writes. A scanj operation has a successful double collect when
the test in line 3 is passed; following the two collects d := collect in line 1
and b := collect in line ?, the sequence numbers in d and b are identical.
Scans with successful double collects are serialized between the end of the
collect in Le 1 and the beginning of the second collect in line 2. Lemma 3.1
proves that the values returned by such a scan constitute a snapshot during
this interval.

Lemma 3.1 Let a = irIr 2... be a run of the unbounded algorithm in which
a particular scan, operation has a successful double collect: a := collect in
line 1 and b := collect in line 2. Let 7ru and r,, be the last read of the first
collect and the first read of the second collect, respectively. Then for every
prefix a, of a, u < v < w snapshot(ar,) = (value(bl), ...,value(bn)).

Proof: By contradiction. That is, suppose that two successive reads by P
of ri in lines 1 and 2 return the same sequence number, and that an update
by P is serialized between the two reads. Since the update is serialized
with its embedded write, a write by Pi to rj also occurs between the two
reads. Furthermore, the sequence number in the second read must be strictly
greater than the sequence number in the first read, a contradiction. The
lemma follows. I

The remaining scans return when they observe an updater move twice:
they will be serialized in the same interval as the embedded scan. The next
lemma guarantees that this interval is contained in the interval of the scan.

Lemma 3.2 Leta = I1 r2... be a run of the unbounded algorithm in which a
particular scani operation observes changes in process Pj 's sequence number
field during two different double collects. Then the value of rj read during
the last collect was written by a scanj operation that began after the first of
the fort collects.

8



These two lemmas imply that all scans are correctly serialized somewhere
in their intervals.

Lemma 3.3 Let a = 7rlr 2... be a run of the unbounded algorithm in which a
particular scani operation beginning in event 7ru returns (vj, ..., v,,) in event
ir.. Then snapshot(a,) = (vi, ..., vn) for some v, u < v < w.

By the pigeon-hole principle, in n + 1 double collects one must be suc-
cessful or some updater must be observed moving twice. Hence scans are
wait-free. This in turn implies that updates are wait-free.

Lemma 3.4 Every scan or update operation by process Pi returns after
0(n 2) atomic steps of Pi , Vi E {1..n}.

This discussion is summarized in the following theorem.

Theorem 3.5 The unbounded algorithm implements a wait-free single-writer
snapshot memory.

4 The Bounded Single-Writer Algorithm

The sequence numbers in the unbounded algorithm enable scan operations
to detect changes to the memory due to concurrent updates. To achieve the
same effect with bounded registers, each scanner/updater pair of processes
communicates via two atomic bits, each written by one and read by the
other. Before performing a double collect, a scan operation sets its bit equal
to the value read in the other bit. If after the double collect, the bits axe
observed by the scanner to be not equal, then the updater changed its bit
(moved) after the scanner's first read of that bit.

Specifically, the bounded single-writer algorithm of Figure 3 replaces
the unbounded sequence number field of ri with n pairs of handshake bits
[P83, L86b]. That is, for each process pair (Pi, Pj) the register ri contains
the bit field pi,j. Additional atomic single-writer single-reader bits qij are
written by Pi and read by Pj. The qij bits are written when Pi scans, (to the
values read from the pi,j bits) and the pij bits are written when Pi updates,
(to the negations of the values read from the qj,i bits). An additional toggle
bit, toggle(ri), is changed during every update, to ensure that each write
operation changes the register value.

9



procedure scanj
begin

0: for j = I to n do moved := 0 od;

0.5: for j = 1 to n do qi,3 := pj,i(rj) od; /* Handshake. *1
1: d collect; /* (value, bit vector, bit, view) tuples */

2: b := collect;, /* (value, bit vector, bit, view) tuples */

3: if (Vj E {L..n}), (pi,i(aj) = pj,i(bj) = qij
and toggle(ai) = toggle(bi)) then /* Nobody moved. */

4: return (value(bi), ..., value(bn));

5: elseforj=1tondo
6: if pi,i(aj) $ qij or pj,i(bj) $ qi,j /* P moved */

or toggle(aj) j toggle(bi) then

7: if moved1 = 1 then /* Pi moved once before! */

8: return (view(bi));
9: else movedi := moved i + 1;

od;

10: goto line 0.5;
end scani;

procedure updatei (value)
begin

0: forj = ito n do fj := -'qj,i od;
/* Collect handshake values. */

1: A := scanj; /* Embedded scan. *1
2: ri := (value, f, -toggle(ri), 3)

end updatei;

Figure 3: The bounded single-writer algorithm.
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4.1 Correctness Proof

For this algorithm, a successful double collect is a pair d: collect; b
collect; with all handshake bits pi, = qij and corresponding toggle bits in
& and 6 identical. The main issue that has to be argued is that the hand-
shake and toggle bits guarantee that a successful double collect produces a
snapshot. This is proven in the following lemma.

Lemma 4.1 Let a = r,7r2 ... be a run of the bounded algorithm in which a
particular scani operation has a successful double collect: a := collect in line
1 and b := collect in line 2. Let 7r, and r , be the last read in line 1 and the
first read of line 2, respectively. Then for every prefix a,, of a, u < v < w,
snapshot(a,) = (value(bl), ...,value(bn)).

Proof: As in the proof of Lemma 3.1, the proof is by contradiction. That
is, suppose that two successive reads by Pi of rj in a collect pair produce
values of pj,i(rj) that are equal to qjj's most recently written value, and
identical toggle(rj)'s. Assume that a write by Pj to ri is serialized between
these two atomic read operations. Consider the last such write operation by
Pj; being last, it must write the same handshake bit b and toggle bit t read
by Pi. Since during an update Pj assigns to pi,i the negation of the value
read in qij, that read of qij must have preceded Pi's most recent write to
qi,j of b. This implies the following sequence of events:

readj(qi,j = -'b), /* update: handshake read */
writei(qi,j = b), /* scan: handshake write */
readj(pj,i(ri) = b, toggle(rj) = t) /* scan: first collect */
writej(pj,i(rj) = b,toggle(rj) = t) /* update: write */
readi(pji(rj) = b, toggle(rj) = t). /* second: second collect */

The first operation, the read by Pi, is a part of the same update as the
later write by Pj, which by assumption is the last write by P serialized
between the two reads by P. It follows that no other write operation by Pj
can be serialized between Pi's two reads. Then the two reads by Pi of rj
return values written by two successive writes by Pi, yet the toggle bits are
identical, a contradiction. (The first of these writes by P does not appear ir
the sequence above: it is P's most recent previous write, and must precede
the first event of the sequence, readj(qi,, = -,b).) Hence, no write operation
by Pj can be serialized between Pi's two reads, and the claim follows. U

11



The serialization, remaining lemmas and theorem from the unbounded
algorithm translate directly to the bounded algorithm. (It is important that
each update operation changes the value, handshake and toggle fields in a
single atomic write operation.)

Lemma 4.2 Let a = 7"17r2 ... be a run of the bounded algorithm in which
a particular scani operation observes changes in process P's handshake or
toggle bits during two different double collects. Then the value of ri read
during the last collect was written by a scanj operation that began after the
first of the four collects.

Lemma 4.3 Let a = 7rw 2... be a run of the bounded algorithm in which a
particular scani operation beginning in event r, returns (vi, ..., vn) in event
r,. Then snapshot(a,) = (vl, ... ,v,) for some v, u < v < w.

Lemma 4.4 Every scan or update operation by process Pi returns after
O(n 2) atomic steps of Pi, Vi E {1..n}.

Theorem 4.5 The bounded algorithm implements a wait-free single-writer
snapshot memory.

5 The Bounded Multi-writer Algorithm

Because processes may now write to any memory location, the handshake
bits and view fields are uncoupled from the value fields. The latter are stored
in multi-writer, multi-reader registers rk, where now the index k is a memory
address not related to process indices. To ensure that each successive write
to these registers has an observable effect, an id field and toggle bit field axe
also included: successive update operations by Pi to word k write i in the
id(rk) field and alternate values in the toggle field. (The id field also allows
a scan operation to attribute an observed change to a specific process.)

Because the handshake bits are not written atomically with the rk regis-
ters, a scan may observe changes by the same update operation twice: once
changing the handshake bits, and once changing the value of a memory
word. Hence, a scan operation must observe process P move three times
before the value in view can be borrowed.

Hence, the algorithm of Figure 4 requires a multi-writer multi-reader reg-
ister rk for every memory address k E f1,..., m}, holding fields value(rk),
id(rk) and toggle(rk) of type Value, {1..n}, and boolean. In addition, for

12



every process Pi there axe 2n single-writer multi-reader boolean registers pj
and qid,, VJ E {1..n}, and a single-writer multi-reader register viewi, holding
a vector of m Values. The scan and update operations of a process i are
described in Figure 4.

5.1 Correctness Proof

The serialization is defined as in the previous algorithms, with updates se-
rialized with the (atomic) writes to the value registers. For this algorithm,
a successful double collect occurs when the test in line 3 is passed. This
test depends on steps 0.5 through 2.5, recording the handshake bits and the
shared registers ri twice: Step 0.5 implicitly collects the values of each pi,i,
by storing pj,i in qij. The next three lines explicitly record the values of
the rk registers and the handshake bits in d, b and h, respectively. The test
is passed if the handshake bits and id, toggle fields of the registers contain
identical values in each pair of respective reads. Again, the main issue that
has to be argued is that a successful double collect produces a snapshot.

Lemma 5.1 Let a = rl 7... be a run of the bounded multi-writer algorithm
in which a particular scan, operation has a successful double collect, includ-
ing & := collect in line 1 and b := collect in line 2. Let r, and 1r, be the
last read of line I and the first read of line 2, respectively. Then for every
prefix a, of a, u < v < w, snapshot(a,,) = (value(b1), ...,value(bm)).

Proof: As in the proofs of Lemmas 4.1 and 3.1, the proof is by contradiction.
Suppose then that two successive reads by Pi of rk both produce the values
id(rk) = j and toggle(rk) = t, and the two reads of pi,j also produce the
same value, c. Assume that an update to word k and hence a write to rk is
serialized between the two atomic reads of rk in lines 1 and 2. Consider the
last such write operation: because the second read by P returned id(rk) =j,

this last write is by P. Since the first read by Pi also returned id(rk) = j
and the same toggle value t, there must be another intervening write by Pi
to rk, with toggle value -,t, serialized between the two reads by Pi. It follows
that the last write by Pj is part of an update that began after Pi's first read
of rk. Within that update, pi,i is set to -"qi. Henceforth, the value of pj,i
cannot change until qij does, so the last read by Pi of pi,i recorded in hj
must see it equal to -qij, a contradiction. Hence, no writes can be serialized
between the two reads of rk.

The full sequence of atomic events constructed in this argument is as
follows:
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procedure scani
begin

0: for j = 1 to n do movedj := 0 od;
0.5: for j = 1 to n do qij := pj,i od; /* Handshake. */
1: d := collect(rk: k E {1,. .. ,m}) ; /* (value, id, bit) triples *1
2: b collect(rk k E {1,. . .,m}) ; /* (value, id, bit) triples */
2.5: h collect(pj,i : j E {1..n}) ; /* handshake bits */
3: if(ViE f1..n}) (qij =hi)

and (Vk E {1, ... ,m}) (id(ak) = id(bk)) /* Nobody moved. */
and (Vk E {1,m..., m}) (toggle(ak) = toggle(bk)) then

4: return (value(bi), ..., value(bn));
5: elseforj=ltondo
6: if ( (qij h,) or ( (3k, id(bk) = j) /* P moved*/

(id(ak) i id(b;) or toggle(ak) 5 toggle(bk)) )) then
7: if movedi -z 2 then /* P moved twice before! */
8: return (viewj);
9: else movedj := movedj + 1;

od;
10: goto line 1;

end scani;

procedure updatei (k,value) /* Process P writes value to memory word k */
begin

0: for j = 1 to n do pij := -,qj,i od; /* Handshake. */
1: viewi := scani; /* Embedded scan: view is a single-writer register */
1.5: tk := -Itk; /* local variable f saved between calls /
2: rk := (value, i, tk) ; /* rk is a multi-writer register */

end updatei;

Figure 4: The bounded multi-writer algorithm.

14



readi(pj,i = c), /* P's first handshake collect */
writei(qij = c), /* P.'s handshake write */
readi(id(r) = j, toggle(rk) = t) /* Pi's first rk collect */
writej(id(rk) = j, toggle(rk) = -,t)) /* P's toggle bit write */
readj(qi,, = c) /* P's handshake read for second write */
writej(pj, = -1c) /* P's handshake write for second write */
writej(id(rk) = j, toggle(rk) = t)) /* P's assumed write */
readi(id(rk) = j, toggle(rk) = t)) /* Pi's second rk collect *1
read(pj, = c), /* Pi's second handshake collect */

It follows that a scanner with a successful double collect can conclude
that no writes are serialized between the last read in line 2 and the first read
in line 3. Hence, the values read are a snapshot, and the lemma follows. 0

The previous lemma says that the scans with successful double collects
can be serialized correctly. It remains to argue that the scans which return
borrowed values use values from scans that run entirely within their interval.
As discussed, the crucial embedded scan lemma must make concession to
the non-atomicity of writes to the handshake and value registers.

Lemma 5.2 Let a = W1712 ... be a run of the bounded multi-writer algo-
rithm in which a particular scani operation detects changes in process P 's
handshake bit or writes by Pj to value registers during three different dou-
ble collects. Then the value of viewj read by P after the last collect was
returned by a scani operation that began after the first of the six collects.

Proof: The proof of this lemma rests on the sequence of relevant atomic
write steps that Pj makes in successive updates:

write to pi,,
write to view
write to rk,
write to pjp
write to viewi
write to rh
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Observing any three changes, in the pj,i or value registers, means that
an intervening scan must have taken place and have been recorded in viewi.
Either this scan or a more recent scan by Pj will be read by Pi.

These two lemmas imply:

Lemma 5.3 Let a = 71W2 ... be a run of the bounded multi-writer algorithm
in which a particular scan, operation beginning in event ru returns (vi, ... , vn)
in event rw,. Then snapshot(av) = (vl,..., vn) for some v, u < v < w.

As before, the pigeon-hole principle implies that in 2n+ 1 double collects
one must be successful or some updater must be observed moving three
times. Hence scans are wait-free. This in turn implies that updates axe
wait-free.

Theorem 5.4 The bounded multi-writer algorithm implements a wait-free
multi-writer snapshot memory.

6 Discussion and Directions for Further Research

The distributed snapshot of Chandy and Lamport [CL85] provides a simple
solution to the similar problem for message-passing systems. The distributed
snapshot algorithm has proven a useful tool in solving other distributed
problems (see, e.g., [G86, BT841), and it is likely snapshot memories will
play a similar role in concurrent programming.

Interestingly, distributed snapshots are not true instantaneous images of
the global state, such as scans of snapshot memories produce. However, dis-
tributed snapshots are indistinguishable, within the system itself, from true
instantaneous images. By applying the emulators of [ABD] to the construc-
tions presented in this paper, implementations of atomic snapshot memory
are obtained in message-passing systems. Snapshots obtained this way are
true instantaneous images of the global state. In addition, these implemen-
tations are resilient to process and link failures, as long as a majority of the
system remains connected.

Anderson [A89a, An90] has obtained, independently, bounded implemen-
tations of single-writer atomic snapshots. Memory operations in Anderson's
implementation of the single-writer snapshot memory perform 0( 2n) reads
and writes to atomic single-writer multi-reader registers, in the worst case.

Anderson originally posed the multi-writer snapshot problem, and uses
single-writer atomic snapshots Lo construct mulLi-writer atomic snapshots
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[A89b, An90]. Together with the bounded single-writer algorithm of this
paper, this provided the first polynomial construction of a shared memory
object that can be instantaneously checkpointed. The multi-writer algo-
rithm of this paper gives an alternative implementation, building instead on
multi-writer atomic registers. The efficiency of these constructions may be
compared by considering two compound constructions, tracing back to oper-
ations on single-writer atomic registers. Anderson's multi-writer algorithm,
based on the bounded single-writer algorithm of this paper, requires 0(n4 )
single-writer operations per update or scan operation in the worst case. Our
multi-writer algorithm, based on multi-writer registers, in turn implemented
from single-writer registers, requires 0(n 3 ) single-writer operations per up-
date or scan operation in the worst case (using the most efficient known
construction of multi-writer registers from single-writer, due to Li, Tromp
and Vitanyi [LTV89I). It is interesting to speculate whether other, more
efficient solutions can be found.

Indeed, an interesting open question is the inherent complexity of imple-
menting atomic snapshots, in terms of both time and space. In all known
bounded algorithms the scanners write to the updaters-is this necessary?
The scans do a large number of reads-is this also necessary?

Another question is to find other applications for atomic snapshots, in
addition to the ones described.

The most challenging avenue of research seems to be the relation be-
tween the power of unbounded and bounded wait-free algorithms. Can
any primitive that is not syntactically unbounded 2 be implemented using
bounded shared memory? Specifically, is there a uniform transformation of
any unbounded wait-free solution for some problem into a bounded wait-free
solution? Even a precise definition of this class of problems is not obvious.

Finally, snapshot memories, though apparently more powerful than reg-
isters, nevertheless have bounded wait-free implementations from those sim-
ple primitives. Herlihy showed that many interesting primitives do not have
wait-free implementations from registers [H881. Is it possible to "close the
gap" further, and construct yet more powerful primitives from registers?
More ambitiously, is it possible to construct a hierarchy of objects imple-
mentable from atomic registers, providing a theoretical basis for the intuition
that snapshot memories are more powerful single-writer registers?

2Clearly, procedures that return integer or other unbounded values will not have
bounded implementations.
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